Overview: A balancing act

The physiological systems of animals
- Operate in a fluid environment
- The relative concentrations of water and solutes in this environment
 - Must be maintained within fairly narrow limits

Freshwater animals
- Show adaptations that reduce water uptake and conserve solutes

Desert and marine animals face desiccating environments
- With the potential to quickly deplete the body water

Osmoregulation
- Regulates solute concentrations and balances the gain and loss of water

Excretion
- Gets rid of metabolic wastes

Concept 44.1: Osmoregulation balances the uptake and loss of water and solutes
Osmoregulation is based largely on controlled movement of solutes
- Between internal fluids and the external environment

Osmosis
- Cells require a balance
 - Between osmotic gain and loss of water
- Water uptake and loss
 - Are balanced by various mechanisms of osmoregulation in different environments
Osmotic Challenges

- **Osmoconformers**, which are only marine animals
 - Are isoosmotic with their surroundings and do not regulate their osmolarity

- Osmoregulators expend energy to control water uptake and loss
 - In a hyperosmotic or hypoosmotic environment

Marine Animals

- Most marine invertebrates are osmoconformers

- Most marine vertebrates and some invertebrates are osmoregulators

Freshwater Animals

- Freshwater animals
 - Constantly take in water from their hypoosmotic environment
 - Lose salts by diffusion

Freshwater Animals

- Freshwater animals maintain water balance
 - By excreting large amounts of dilute urine
 - Salts lost by diffusion
 - Are replaced by foods and uptake across the gills

Marine bony fishes are hypoosmotic to sea water

- And lose water by osmosis and gain salt by both diffusion and from food they eat

- These fishes balance water loss
 - By drinking seawater

Figure 44.3a

- Osmoregulation in a saltwater fish

Figure 44.3b

- Osmoregulation in a freshwater fish
Animals That Live in Temporary Waters

- Some aquatic invertebrates living in temporary ponds
 - Can lose almost all their body water and survive in a dormant state
- This adaptation is called anhydrobiosis

Land Animals

- Land animals manage their water budgets
 - By drinking and eating moist foods and by using metabolic water

Transport Epithelia

- Transport epithelia
 - Are specialized cells that regulate solute movement
 - Are essential components of osmotic regulation and metabolic waste disposal
 - Are arranged into complex tubular networks

Concept 44.2: An animal’s nitrogenous wastes reflect its phylogeny and habitat

- The type and quantity of an animal’s waste products
 - May have a large impact on its water balance
Among the most important wastes
- Are the nitrogenous breakdown products of proteins and nucleic acids

Forms of Nitrogenous Wastes
- Different animals
 - Excrete nitrogenous wastes in different forms

Ammonia
- Animals that excrete nitrogenous wastes as ammonia
 - Need access to lots of water
 - Release it across the whole body surface or through the gills

Urea
- The liver of mammals and most adult amphibians
 - Converts ammonia to less toxic urea
- Urea is carried to the kidneys, concentrated
 - And excreted with a minimal loss of water

Uric Acid
- Insects, land snails, and many reptiles, including birds
 - Excrete uric acid as their major nitrogenous waste
- Uric acid is largely insoluble in water
 - And can be secreted as a paste with little water loss

The Influence of Evolution and Environment on Nitrogenous Wastes
- The kinds of nitrogenous wastes excreted
 - Depend on an animal’s evolutionary history and habitat
- The amount of nitrogenous waste produced
 - Is coupled to the animal’s energy budget
Concept 44.3: Diverse excretory systems are variations on a tubular theme

Excretory systems

- Regulate solute movement between internal fluids and the external environment

Most excretory systems

- Produce urine by refining a filtrate derived from body fluids
 - Filtration
 - Reabsorption
 - Secretion
 - Excretion

Key functions of most excretory systems are

- Filtration, pressure-filtering of body fluids producing a filtrate
- Reabsorption, reclaiming valuable solutes from the filtrate
- Secretion, addition of toxins and other solutes from the body fluids to the filtrate
- Excretion, the filtrate leaves the system

Survey of Excretory Systems

- The systems that perform basic excretory functions
 - Vary widely among animal groups
 - Are generally built on a complex network of tubules

Protonephridia: Flame-Bulb Systems

- A protonephridium
 - Is a network of dead-end tubules lacking internal openings

- The tubules branch throughout the body
 - And the smallest branches are capped by a cellular unit called a flame bulb
- These tubules excrete a dilute fluid
 - And function in osmoregulation
Metanephridia

- Each segment of an earthworm
 - Has a pair of open-ended metanephridia

Malpighian Tubules

- In insects and other terrestrial arthropods, malpighian tubules
 - Remove nitrogenous wastes from hemolymph and function in osmoregulation

Vertebrate Kidneys

- Kidneys, the excretory organs of vertebrates
 - Function in both excretion and osmoregulation

Concept 44.4

- Nephrons and associated blood vessels are the functional unit of the mammalian kidney
- The mammalian excretory system centers on paired kidneys
 - Which are also the principal site of water balance and salt regulation
Each kidney
- Is supplied with blood by a renal artery and drained by a renal vein

Figure 44.13a

Urine exits each kidney
- Through a duct called the ureter
- Both ureters
 - Drain into a common urinary bladder

Structure and Function of the Nephron and Associated Structures
- The mammalian kidney has two distinct regions
 - An outer renal cortex and an inner renal medulla

Figure 44.13b

Filtration of the Blood
- Filtration occurs as blood pressure
 - Forces fluid from the blood in the glomerulus into the lumen of Bowman’s capsule

Figure 44.13c, d

Filtration of small molecules is nonselective
- And the filtrate in Bowman’s capsule is a mixture that mirrors the concentration of various solutes in the blood plasma
Pathway of the Filtrate

- From Bowman’s capsule, the filtrate passes through three regions of the nephron
 - The proximal tubule, the loop of Henle, and the distal tubule
- Fluid from several nephrons
 - Flows into a collecting duct

Blood Vessels Associated with the Nephrons

- Each nephron is supplied with blood by an afferent arteriole
 - A branch of the renal artery that subdivides into the capillaries
- The capillaries converge as they leave the glomerulus
 - Forming an efferent arteriole
- The vessels subdivide again
 - Forming the peritubular capillaries, which surround the proximal and distal tubules

From Blood Filtrate to Urine: A Closer Look

- Filtrate becomes urine
 - As it flows through the mammalian nephron and collecting duct

- Secretion and reabsorption in the proximal tubule
 - Substantially alter the volume and composition of filtrate
- Reabsorption of water continues
 - As the filtrate moves into the descending limb of the loop of Henle

- As filtrate travels through the ascending limb of the loop of Henle
 - Salt diffuses out of the permeable tubule into the interstitial fluid
- The distal tubule
 - Plays a key role in regulating the K+ and NaCl concentration of body fluids
- The collecting duct
 - Carries the filtrate through the medulla to the renal pelvis and reabsorbs NaCl

- Concept 44.5: The mammalian kidney’s ability to conserve water is a key terrestrial adaptation
 - The mammalian kidney
 - Can produce urine much more concentrated than body fluids, thus conserving water
Solute Gradients and Water Conservation

- In a mammalian kidney, the cooperative action and precise arrangement of the loops of Henle and the collecting ducts
 - Are largely responsible for the osmotic gradient that concentrates the urine

Two solutes, NaCl and urea, contribute to the osmolarity of the interstitial fluid
 - Which causes the reabsorption of water in the kidney and concentrates the urine

The countercurrent multiplier system involving the loop of Henle
 - Maintains a high salt concentration in the interior of the kidney, which enables the kidney to form concentrated urine

The collecting duct, permeable to water but not salt
 - Conducts the filtrate through the kidney’s osmolarity gradient, and more water exits the filtrate by osmosis

Urea diffuses out of the collecting duct
 - As it traverses the inner medulla

Urea and NaCl
 - Form the osmotic gradient that enables the kidney to produce urine that is hyperosmotic to the blood

Regulation of Kidney Function

- The osmolarity of the urine
 - Is regulated by nervous and hormonal control of water and salt reabsorption in the kidneys
Antidiuretic hormone (ADH)
- Increases water reabsorption in the distal tubules and collecting ducts of the kidney

The renin-angiotensin-aldosterone system (RAAS)
- Is part of a complex feedback circuit that functions in homeostasis

Another hormone, atrial natriuretic factor (ANF)
- Opposes the RAAS

The South American vampire bat, which feeds on blood
- Has a unique excretory system in which its kidneys offload much of the water absorbed from a meal by excreting large amounts of dilute urine

Concept 44.6: Diverse adaptations of the vertebrate kidney have evolved in different environments
- The form and function of nephrons in various vertebrate classes
 - Are related primarily to the requirements for osmoregulation in the animal’s habitat

Exploring environmental adaptations of the vertebrate kidney