Chapter 4
Genetics and Cellular Function

- Nucleus and nucleic acids
- Protein synthesis and secretion
- DNA replication and the cell cycle
- Chromosomes and heredity

The Nucleic Acids (medical history)

Organization of the Chromatin

- Threadlike chromatin
- Chromosomes – compacted DNA
- How many human chromosomes?
 - Fruitflies?
 - Butterflies?

Chromosome loci

Y Chromosome

Nucleotide Structure
DNA Structure: Twisted Ladder

Nitrogenous Bases

School of Medicine and Dentistry

Complementary Base Pairing

DNA Function

School of Medicine and Dentistry

RNA: Structure and Function

Genetic Control of Cell Action through Protein Synthesis

School of Medicine and Dentistry

School of Medicine and Dentistry

School of Medicine and Dentistry

School of Medicine and Dentistry
Preview of Protein Synthesis

Genetic Code

<table>
<thead>
<tr>
<th>1st base in codon</th>
<th>2nd base in codon</th>
<th>3rd base in codon</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>A</td>
<td>G</td>
<td>Urea</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>G</td>
<td>Threonine</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>G</td>
<td>Alanine</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>U</td>
<td>Glycine</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>U</td>
<td>Glycine</td>
</tr>
</tbody>
</table>

Transcription – making an RNA strand

Alternative Splicing of mRNA

Transfer RNA (tRNA)

- Activation by ATP binds specific amino acid and provides necessary energy to join amino acid to growing protein molecule
- Anticodon binds to complementary codon of mRNA
Translation of mRNA

Polyribosomes and Signal Peptides

Review: DNA & Peptide Formation

- DNA double helix
- DNA coding strand
- Codons of mRNA
- Anticodons of tRNA
- Amino acids
- Peptide

Chaperones and Protein Structure

- Newly forming protein molecules must coil, fold or join with another protein or nonprotein moiety
- Chaperone proteins
 - prevent premature folding of molecule
 - assists in proper folding of new protein
 - may escort protein to destination in cell
- Stress or heat-shock proteins
 - chaperones produced in response to heat or stress
 - help protein fold back into correct functional shapes

Protein Packaging & Secretion

DNA Replication

- Old DNA
- New DNA
- DNA polymerase
- Replication fork
DNA Replication: Errors and Mutations

- Error rates of DNA polymerase
 - in bacteria, 3 errors per 100,000 bases copied
 - every generation of cells would have 1,000 faulty proteins
- Proofreading and error correction
 - a small polymerase proofreads each new DNA strand and makes corrections
 - results in only 1 error per 1,000,000,000 bases copied
- Mutations - changes in DNA structure due to replication errors or environmental factors
 - some cause no effect, some kill cell, turn it cancerous or cause genetic defects in future generations

Cell Cycle

- G_1 phase, the first gap phase
- S phase, synthesis phase
- G_2 phase, second gap phase
- M phase, mitotic phase
- G_0 phase, cells that have left the cycle
- Cell cycle duration varies between cell types

Mitosis

- Chromatin supercoils into chromosomes
 - each chromosome = 2 genetically identical sister chromatids joined at the centromere
 - each chromosomes contains a DNA molecule
- Nuclear envelope disintegrates
- Centrioles sprout microtubules pushing them apart towards each pole of the cell

Mitosis: Prophase

- Chromatin supercoils into chromosomes
 - each chromosome = 2 genetically identical sister chromatids joined at the centromere
 - each chromosomes contains a DNA molecule
- Nuclear envelope disintegrates
- Centrioles sprout microtubules pushing them apart towards each pole of the cell

Prophase Chromosome
Mitosis: Metaphase
- Chromosomes line up on equator
- Spindle fibers (microtubules) from centrioles attach to centromere
- Asters (microtubules) anchor centrioles to plasma membrane

Mitosis: Anaphase
- Centromeres split in 2 and chromatids separate
- Daughter chromosomes move towards opposite poles of cells
- Centromeres move down spindle fibers by kinetochore protein (dynein)

Mitosis: Telophase
- Chromosomes uncoil forming chromatin
- Nuclear envelopes form
- Mitotic spindle breaks down

Cytokinesis
- Division of cytoplasm / overlaps telophase
- Myosin pulls on microfilaments of actin in the membrane skeleton
- Causes crease around cell equator called cleavage furrow
- Cell pinches in two
- Interphase has begun

Timing of Cell Division

- Have enough cytoplasm for 2 daughter cells
- DNA replicated
- Adequate supply of nutrients
- Growth factor stimulation
- Open space in tissue due to neighboring cell death

Chromosomes and Heredity

- Loss of growth factors or nutrients
- Contact inhibition
This is my son, Irvine

Karyotype of Normal Human Male

Genetics of Earlobes

Genetics of Earlobes

Punnett square

Multiple Alleles, Codominance, Incomplete Dominance

Polygenic Inheritance

- 2 or more genes combine their effects to produce single phenotypic trait, such as skin and eye color, alcoholism and heart disease
Pleiotropy

- Single gene causes multiple phenotypic traits (ex. sickle-cell disease)
 - sticky, fragile, abnormal shaped red blood cells at low oxygen levels cause anemia and enlarged spleen

Sex-Linked Inheritance

- Recessive allele on X, no gene locus for trait on Y, so hemophilia more common in men (mother must be carrier)

Penetrance and Environmental Effects

- Penetrance
 - % of population to express predicted phenotype given their genotypes
- Role of environment
 - brown eye color requires phenylalanine from diet to produce melanin, the eye pigment

Pedigree analysis

Genetics of sickle cell anemia

Inheritance of achondroplasia
Alleles at the Population Level

- Dominance and recessiveness of allele do not determine frequency in a population
- Some recessive alleles, blood type O, are the most common
- Some dominant alleles, polydactyly and blood type AB, are rare

Cancer

- Tumors (neoplasms)
 - abnormal growth, when cells multiply faster than they die
 - oncology is the study of tumors
- Benign
 - connective tissue capsule, grow slowly, stays local
 - potentially lethal by compression of vital tissues
- Malignant
 - unencapsulated, fast growing, metastatic (causes 90% of cancer deaths)

Causes of Cancer

- Carcinogens - estimates of 60 - 70% of cancers from environmental agents
 - chemical
 - cigarette tar, food preservatives
 - radiation
 - UV radiation, α particles, γ rays, β particles
 - viruses
 - type 2 herpes simplex - uterus, hepatitis C - liver

Mutagens

- Trigger gene mutations
 - cell may die, be destroyed by immune system or produce a tumor
- Scavenger cells
 - remove them before they cause genetic damage
- Peroxisomes
 - neutralize nitrates, free radicals and oxidizing agents
- Nuclear enzymes
 - repair DNA
- Tumor necrosis factor (TNF) from macrophages and certain WBCs destroys tumors

Malignant Tumor (Cancer) Genes

- Oncogenes
 - mutated form of normal growth factor genes called proto-oncogenes
 - sis oncogene causes excessive production of growth factors
 - stimulate neovascularization of tumor
 - ras oncogene codes for abnormal growth factor receptors
 - sends constant divide signal to cell
- Tumor suppressor genes
 - inhibit development of cancer
 - damage to one or both removes control of cell division

Effects of Malignancies

- Displaces normal tissue, organ function deteriorates
 - rapid cell growth of immature nonfunctional cells
 - metastatic cells have different tissue origin
- Block vital passageways
 - block air flow and compress or rupture blood vessels
- Diverts nutrients from healthy tissues
 - tumors have high metabolic rates
 - causes weakness, fatigue, emaciation, susceptibility to infection
 - cachexia is extreme wasting away of muscle and adipose tissue