Chapter 17
Endocrine System

- Overview
- Hypothalamus and pituitary gland
- Other endocrine glands
- Hormones and their actions
- Stress and adaptation
- Eicosanoids and paracrine signaling
- Endocrine disorders

Overview of Cell Communications

- Necessary for integration of cell activities
- Mechanisms

Components of Endocrine System

- Hormone
- Target cells
- Endocrine system

Endocrine Organs

- Major organs of endocrine system

Endocrine vs. Exocrine Glands

- Exocrine glands
- Endocrine glands
- Endocrine system

Differences in Nervous and Endocrine Systems

- Means of communication
- Speed and persistence of response
- Adaptation to long-term stimuli
- Area of effect
Communication by the Nervous & Endocrine Systems

Similarities in Nervous and Endocrine Systems
- Several chemicals function as both hormones and neurotransmitters
- Some hormones secreted by neuroendocrine cells (neurons)
- Both systems with overlapping effects on same target cells
- Systems regulate each other

Hypothalamus

Pituitary Gland (Hypophysis)

Embryonic Development of Pituitary

Pituitary Gland Anatomy and Hormones of the Neurohypophysis
Gonadotropin-releasing hormone controls FSH + LH release
Thyrotropin-releasing hormone
Corticotropin-releasing hormone
Prolactin-releasing hormone
Prolactin-inhibiting hormone
GH-releasing hormone
Somatostatin

Hypothalamo-Hypophyseal Portal System

- Hormones secreted by hypothalamus, travel in portal system to anterior pituitary
- Hormones can also be secreted by anterior pituitary (under control of hypothalamic releasers and inhibitors)

Anterior Pituitary Hormones

- Principle hormones and target organs shown
- Axis - refers to way endocrine glands interact

Pituitary Hormones - Pars Intermedia

- Absent from adult human although present in fetus
- Reminant cells
 - produce POMC (pro-opiomelanocortin) which is processed into ACTH and endorphins
- Produces MSH in animals influencing pigmentation of skin, hair or feathers
 - not apparently present/functioning in humans

Pituitary Hormones - Posterior Lobe

Pituitary Hormone Actions:
Anterior Lobe Hormones

- FSH (secreted by gonadotrope cells)
- LH (secreted by gonadotrope cells)
- TSH (secreted by thyrotropes)
Pituitary Hormone Actions:
Anterior Lobe Hormones
- ACTH or corticotropin (secreted by corticotropes)
- PRL (secreted by lactotropes)
- GH or somatotropin – see next 2 slides

Growth Hormone
- Secreted by somatotropes of anterior pituitary
- Promotes tissue growth
- Functions of GH-IGF

Growth Hormone and Aging
- Childhood and adolescence
- Adulthood
- Levels of GH

Pituitary Hormone Actions:
Posterior Lobe Hormones
- ADH
 - targets kidneys to ↑ water retention, reduce urine
 - also functions as neurotransmitter
- Oxytocin
 - labor contractions, lactation
 - possible role sperm transport, emotional bonding

Control of Pituitary:
Hypothalamic and Cerebral Control
- Anterior lobe control - releasing hormones and inhibiting hormones of hypothalamus
- Posterior lobe control - neuroendocrine reflexes

Control of Pituitary:
Feedback from Target Organs
- Negative feedback
- Positive feedback
Pineal Gland
• Peak secretion 1-5 yr. olds, by puberty 75% lower
• Produces serotonin by day, converts it to melatonin at night
• May regulate timing of puberty in humans
• Melatonin ↑ in SAD + PMS, ↓ by phototherapy
 – depression, sleepiness, irritability and carbohydrate craving

Thyroid Gland Anatomy
• Largest endocrine gland with high rate of blood flow
• Anterior and lateral sides of trachea
• 2 large lobes connected by isthmus

Histology of the Thyroid Gland

Parathyroid Glands
• PTH release
 – ↑ blood Ca²⁺ levels
 – promotes synthesis of calcitriol
 • ↑ absorption of Ca²⁺
 • ↓ urinary excretion
 • ↑ bone resorption

Adrenal Gland

Thymus
• Location: mediastinum, superior to heart
• Involution after puberty
• Secretes hormones that regulate development and later activation of T-lymphocytes
 – thymopoietin and thymosins

Larynx
Thyroid gland
Trachea
Thymus
Lung
Adrenal Medulla
- Sympathetic ganglion innervated by sympathetic preganglionic fibers
- Hormonal effect is longer lasting
- Stress causes medullary cells to stimulate cortex

Adrenal Cortex
- Layers -- (outer) zona glomerulosa, (middle) zona fasciculata, (inner) zona reticularis
- Corticosteroids

Pancreas
- Retroperitoneal, inferior and dorsal to stomach

Pancreatic Hormones
- 1-2 Million pancreatic islets producing hormones
- 98% of organ produces digestive enzymes (exocrine)
- Insulin (from β cells)

Pancreatic Hormones 2
- Glucagon (from α cells)
- Somatostatin from delta (δ) cells
- Hyperglycemic hormones raise blood glucose
- Hypoglycemic hormones lower blood glucose

Histology of Ovary
- Follicles = egg surrounded by granulosa cells
Histology of Testis

Seminiferous tubules produce sperm.

Endocrine Functions of Other Organs

• Heart –
 – atrial natriuretic peptide released with an increase in BP
 – ↓ blood volume + ↓ BP by ↑ Na⁺ and H₂O loss by kidneys
• Skin
 – keratinocytes help produce D₃, first step in synthesis of calcitriol
• Liver
 – converts vitamin D₃ to calcidiol
 – source of IGF-I that works with GH
 – secretes about 15% of erythropoietin
 – secretes angiotensinogen (a prohormone)
 • precursor of angiotensin II, a vasoconstrictor

Endocrine Functions of Other Organs

• Kidneys
 – converts calcidiol to calcitriol (active form of vitamin D)
 • ↑ absorption by intestine and inhibits loss in the urine
 • more Ca²⁺ available for bone deposition
 – produces 85% of erythropoietin –
 • stimulates bone marrow to produce RBC’s
 – convert angiotensinogen to angiotensin I
• Stomach and small intestines (10 enteric hormones)
 – coordinate digestive motility and secretion
• Placenta
 – secretes estrogen, progesterone and others
 • regulate pregnancy, stimulate development of fetus and mammary glands

Hormone Chemistry

• Steroids
 – derived from cholesterol
 • sex steroids, corticosteroids
• Peptides and glycoproteins
 – OT, ADH; all releasing and inhibiting hormones of hypothalamus; most of anterior pituitary hormones
• Monoamines (biogenic amines)
 – derived from amino acids
 • catecholamines (norepinephrine, epinephrine, dopamine) and thyroid hormones

Hormone Synthesis: Steroid Hormones

Hormone Synthesis: Peptides

• Cellular steps
• Insulin formation
Hormone Synthesis: Monoamines

Thyroid Hormone Synthesis

Thyroid Hormone Synthesis

Hormone Transport

• Monoamines and peptides are hydrophilic so mix easily with blood plasma
• Steroids and thyroid hormone are hydrophobic and must bind to transport proteins for transport

• Transport proteins in blood plasma

Hormone Receptors

Hormone Mode of Action

• Hydrophobic hormones (steroids and thyroid hormone) penetrate plasma membrane – enter nucleus
• Hydrophilic hormones (monoamines and peptides) can not pass through membrane so must bind to cell-surface receptors
Thyroid Hormone Effects

Hydrophilic Hormones: Mode of Action

cAMP as Second Messenger

1. Hormone binding activates G protein
2. Activates adenylate cyclase
3. Produces cAMP
4. Activates kinases
5. Activates enzymes
6. Metabolic reactions: synthesis, secretion, change membrane potentials

Peptides and catecholamines bind to receptors in cell membrane

Hydrophilic Hormones: Mode of Action

Other 2nd & 3rd Messengers

Hormones may use different second messengers in different tissues.

Enzyme Amplification

Modulation of Target Cell Sensitivity

Hormones may use different second messengers in different tissues.
Hormone Interactions

Stress and Adaptation

Alarm Reaction

Stage of Resistance

Stage of Exhaustion

Paracrine Secretions

- Chemical messengers that diffuse short distances and stimulate nearby cells
 - unlike neurotransmitters not produced in neurons
 - unlike hormones not transported in blood
- Examples and their functions
 - histamine from mast cells in connective tissue causes relaxation of blood vessel smooth muscle
 - nitric oxide from endothelium of blood vessels causes vasodilation
 - somatostatin from gamma cells inhibits secretion of alpha and beta cells in pancreas
 - catecholamines diffuse from adrenal medulla to cortex
Eicosanoids: a Paracrine Secretion

- Derived from arachidonic acid (fatty acid)
- Hormone releases arachidonic acid from plasma membrane and 2 enzymes convert it into eicosanoids

Eicosanoid Synthesis

Endocrine Disorders

- Variations in hormone concentration and target cell sensitivity have noticeable effects on the body
- Hyposcretion – inadequate hormone release
 - tumor or lesion destroys gland
- Hypersecretion – excessive hormone release
 - tumors or autoimmune disorder

Pituitary Disorders

- Hypersecretion of growth hormones
 - acromegaly
 - thickening of the bones and soft tissues
 - problems in childhood or adolescence
 - gigantism if oversecretion
 - dwarfism if hyposecretion

Thyroid Gland Disorders

- Congenital hypothyroidism (↓ TH)
 - infant suffers abnormal bone development, thickened facial features, low temperature, lethargy, brain damage
- Myxedema (adult hypothyroidism, ↓ TH)
 - low metabolic rate, sluggishness, sleepiness, weight gain, constipation, dry skin and hair, cold sensitivity, ↑ blood pressure and tissue swelling
- Endemic goiter (goiter = enlarged thyroid gland)
 - dietary iodine deficiency, no TH, no - feedback, ↑ TSH
- Toxic goiter (Graves disease)
 - antibodies mimic TSH, ↑TH, exophthalmos

Endemic Goiter
Parathyroid Disorders

- Hypoparathyroid
 - surgical excision during thyroid surgery
 - fatal tetany 3-4 days
- Hyperparathyroid = excess PTH secretion
 - tumor in gland
 - causes soft, fragile and deformed bones
 - ↑ blood Ca^{2+}
 - renal calculi

Adrenal Disorders

- Cushing syndrome is excess cortical secretion
 - causes hyperglycemia, hypertension, weakness, edema
 - muscle and bone loss occurs with protein catabolism
 - buffalo hump & moon face = fat deposition between shoulders or in face
- Adrenogenital syndrome (AGS)
 - adrenal androgen hyperssecretion accompanies Cushing
 - causes enlargement of external sexual organs in children & early onset of puberty
 - masculinizing effects on women (deeper voice & beard growth)

Diabetes Mellitus

- Signs and symptoms of hyposecretion of insulin
 - polyuria, polydipsia, polyphagia
 - hyperglycemia, glycosuria, ketonuria
 - osmotic diuresis: blood glucose levels rise above transport maximum of kidney tubules, glucose remains in urine, osmolarity ↑ and draws water into urine
 - Transport maximum of glucose reabsorption
 - kidney tubules can not reabsorb glucose fast enough if no insulin is present
 - osmotic diuresis results due to excess glucose and ketones in tubules

Types of Diabetes Mellitus

- Type I (IDDM) - 10% of cases
 - some cases have autoimmune destruction of β cells, diagnosed about age 12
 - treated with diet, exercise, monitoring of blood glucose and periodic injections of insulin or insulin pump
- Type II (NIDDM) - 90%
 - insulin resistance
 - failure of target cells to respond to insulin
 - 3 major risk factors are heredity, age (40+) and obesity
 - treated with weight loss program of diet and exercise,
 - oral medications improve insulin secretion or target cell sensitivity

Pathology of Diabetes

- Acute pathology: cells cannot absorb glucose, rely on fat and proteins (weight loss + weakness)
 - fat catabolism ↑ FFA’s in blood and ketone bodies
 - ketonuria promotes osmotic diuresis, loss of Na^+ + K^+
 - ketoacidosis occurs as ketones ↓ blood pH
 - if continued causes dyspnea and eventually diabetic coma
- Chronic pathology
 - chronic hyperglycemia leads to neuropathy and cardiovascular damage from atherosclerosis
 - retina and kidneys (common in type I), atherosclerosis leading to heart failure (common in type II), and gangrene

Hyperinsulinism

- From excess insulin injection or pancreatic islet tumor
- Causes hypoglycemia, weakness and hunger
 - triggers secretion of epinephrine, GH and glucagon
 - side effects: anxiety, sweating and ↑ HR
- Insulin shock
 - uncorrected hyperinsulinism with disorientation, convulsions or unconsciousness